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Abstract: In the present paper we present the investigation result of the binding energy of the ground state of a Rare Earth impurity 

and cat ion vacancy complex in some ionic solids, using a many body interaction potential using computer simulation. The 

calculated binding energy reveals that the phenomena of polarization due to the charged impurity is a responsible factor and 

governs the stability and ground state configuration of the defect complex. Many body interactions are found responsible to 

enhance the polarization of the complex and in turn to the larger binding energy of the deflect complex, in comparison with the 

general two body potentials. 
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1. INTRODUCTION 

The Computer Simulation and Modeling of various types 

solids that include conductors, semi-conductors, insulators, 

alloys, mixed crystals, solid solutions, non-stochiometric 

compounds, surfaces, interfaces, nano-materials etc., play s 

significant role in understanding the properties of point 

defects, defect complexes and clusters, F-centre aggregates 

and their influence over the rest of the solid continuum.[1-20]. 

Ruiz-Mejia etal [21, 22] have extended the initial work of 

Reitz and Gammal [23] and Bassani and Fumi [24] , to 

calculate the bonding energy alkali halide crystals, with 

different impurities for both the ground and excited status. In 

their investigations they have considered a two–body inter 

ionic potential with arbitrary parameters for the first neighbor 

ion-ion interactions. Also they have neglected the van der 

wall and many body forces. In addition at this, the ionic 

polarizabilities considered by them are arbitrary and hence 

predict inaccurate discretion of the polarization energy around 

the defect complex. In the present work we calculate the 

binding energies of divalent impurity-cat ion vacancy 

complex defect in some alkali halide crystals by considering 

divalent impurity like Eu 
2+

. In section- 2 we briefly explain 

the present three-body potential. In section -3, we outline 

mechanism of the divalent impurity- cat ion vacancy defect 

configuration in ionic crystals. In section – 4 we present the 

charge transfer effects around the defect complex. Section-5 

and Section-6 deal with method calculation and the results 

respectively.  

2. THREE BODY INTERACTION POTENTIAL 

The three body interaction potential can be expressed as 

W ( r ) = 
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Here, the first term is the usual long- range coulomb 

interaction energy. The second term is the long-range three-

body inter action energy. The third and fourth terms are the 

energies, respectively due to van der wall dipole –dipole and 

dipole –Quadra pole interactions. The last term is the 

Hafemeister and Flygare type short range overlap repulsive 

potential. This potential has three parameters b, ρ  and f (r). 

The three –body interaction parameter f (r) has the functional 

form f (r) – f0 exp [-r/ ρ ] and is considered to be effective up 

to the first neighbors only. The higher order derivatives of f ( 

r ) can be evaluated by the above functional form. The short 

range parameters ρ  and f ( r ) can be obtained from overlap 

integrals [20]. 

3. DIVALENT IMPURITY- CAT ION VACANCY 

DEFECT COMPLEX CONFIGURATION 

The displacement patterns and dipole moments of each ion up 

to first neighbor of the defect complex are depicted in fig.1 In 

the absence of the vacancy, the nearest neighbor of the 

divalent impurity will be displace two wards the impurity. 

The ions at distance of 2 r and 2r will be displaced at x2 

and x1 respectively. Similarly in the absence of the impurity, 

the nearest neighbors of the are displaced away from the 

vacancy. The second and third neighbors of the vacancy will 

be displaced at x4 and x3 respectively. In the presence of the 

both the defects simultaneously, the resultant displacements 
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of the first neighbor of the defect complex will be ξ 1r0 and 

ξ 2r0. Since, the divalent impurity Cat ion vacancy is a neutral 

defect, the displacements of the second neighbors of both 

impurity and vacancy will not be affected much and remain 

same as in the individual cases. For calculation of modified 

charge on the ions around the deflect complex the presence of 

the both the real and virtual charges at each ion sets is 

considered, and thereby calculate the three- body interaction 

energy [20].  

 
 

Fig. 1. Distorted lattice configuration due to the divalent 

imputiry-cation vacancy complex defect in NaCl-type crystal. (I) 

denotes for divalent impurity and (v) denotes the cat ion 

vacancy. 

Accordingly the modified charge of the impunity and vacancy 

due to overlap of virtual charges with these defects can be 

written as 

Zme = Ze ( 1+ 6 f ( r ) )          (2) 

In the absence of the vacancy, the real charges at positions 1 – 

6 each being displaced by η 1 r0 from the original position due 

to the effective charge of the impurity, will have an amount of 

overlap with impurity sets can be expressed as 

 fd 
(a)

 ( r ) = f 0 exp [ - (1- η 1) –r0 / ρ ]   (3) 

The corresponding modified charge is  

Zma 
(a)

 e ( r ) = ze [1+ 6fd 
(a)

 (r ) ]      (4) 

The other type of overlapping charges result from the 

interactions between the ions 1 to 6 with their respective 

neighbors. The amount of overlap between the ions and their 

six nearest neighbors (including impurity) can be writes as 

fdd
 (a)

 = f0 [exp (-(1- 1η )r0 / ρ  ) + exp (- (1+ 1η +2x1) r0/ ρ  )] 

+ 4 exp (-((1+x
2
) + (x2 + 1η )

2 
+ (x

2
 + 1η )

2
 ) 

½
 r0/ ρ )     (5) 

Hence the modified ionic charge of the nearest neighbors of 

the impurity can be expressed as 

)(a

mddz  e = ze [1+ fdd
(a)

 ( r )        (6) 

Similarly , the modified ionic charges for the ions around the 

vacancy can be calculated. The corresponding modified 

charges are 
)(b

mdz  and 
)(b

mddz  for the nearest and next-nearest 

neighbors respectively. These modified charges include 

different displacement terms corresponding to the nearest ( 2η
, x3) and next nearest neighbor (x4) displacements. But in the 

presence of the divalent impurity-cat ion vacancy pair, the 

impurity and the vacancy influence the displacements each 

other neighboring ions. Hence the displacements around the 

impurity and vacancy will change. As shown in fig.1, the 

displacements of the nearest neighbors (nn) of impurity will 

be ξ 1 , r0 due to the influence of the vacancy and the same for 

the nn of the vacancy will be ξ 2 , r0 due to the influence of the 

impurity on them. Hence, in the presence of both impurity and 

vacancy, the modified charge of atom at 1 due to its nearest 

neighbors (including the impurity) can be written as 

)1(

mdZ e = Ze [ 1+ f0 (exp (-1-ξ 1 ) r0/ ρ ) + 3 exp ( -((ξ 1 +x2)
2
 

+ (1+x2)
2
)

1/2
 r0/ ρ ) 

+ exp (-(1+ ξ 1 2x1 ) r0/ ρ ) + exp (-(ξ 1 + x2 -2x3)
2

 + 

(1+x2)
2
)

1/2
 r0/ ρ )         (7) 

Which is same for ion at 2 , as it situated at a symmetrical 

position with respect to the defect complex. In the similarly 

way, the modified charge on the ions at 3 and 6 will be 
)2(

mdZ e = Ze [ 1+ f0 (exp (-1-ξ 1 ) r0/ ρ ) + 2 exp ( -((ξ 1+ x2)
2
 

+ (1+x2)
2
)

1/2
 r0/ ρ ) 

+ exp (-(1+ ξ 1 2x1 ) r0/ ρ ) +2 exp (-(1 + x2)
2
 + x4

2
 + x2 –x4 +

ξ 1)
2
)

1/2
 r0/ ρ )       (8) 

The modified charges on the ion at 4 and 5 will be 

)3(

mdZ
e = Ze [ 1 +f0 (exp (-((1-ξ 1)

2
 +ξ 2

2
) 

½
 r0/ ρ ) + exp (-

((1+ξ 2)
2
 + ξ 1

2
) 

½
 r0/ ρ  )+ 2 exp (-((ξ 2+ x4)

2
 + (ξ 1 + x2)2

 
+ 

(1+ x2 –x4)2)1/2 r0 / ρ  ) + exp (-((ξ 2 + x4)
2
 (1+ ξ 1

+ 
2x1-

x4)
2
)

1/2
 r0 / ρ  )+ exp (- ((1+x2 -2x3-ξ 2)

2
 + (ξ 1 + x

2
) 

½
 r0/ ρ ) ]    

       ( 9) 
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The modified charges on the ions at 7 and 10 due to defect 

complex is 

)4(

mdZ e = Ze [ 1+f0 (exp (- (1+ ξ 2 ) r0 / ρ  + 2 exp (-(x2
2
 + (1-

x4)
2
 + (ξ 2 – x2 + x4)

2
 ) ½ r0 / ρ  ) + exp ( - ( 1- ξ 2 – 2x3) r0 / 

ρ  ) + 2 exp ( - ((1-x4)
2
 + (ξ 2 + x4)

2
) ½ r0 / ρ  )) ]     

                    (10) 

Finally, the modified charges on the ions at 8 and 9 can be 

written as 
)5(

mdZ e = Ze [ 1+f0 (exp (- (1+ ξ 2 ) r0/ ρ ) + exp (- ((1-x4)
2
 + (

ξ 2 -2x1 + x4)
2
 ) ½ r0/ ρ ) + 3 exp ( - ((1-x4)

2 
+ (ξ 2 + x4) 

2
) ½ 

r0/ ρ  )+ exp (-((1-ξ 2 – 3x3) r0 / ρ  ) ]        (11) 

The above modified charges are incorporated in various 

energy terms appropriately to calculate the binding energy of 

the defect complex. 

4. FORMULATION BINDING ENERGY OF DEFECT 

COMPLEX 

For the formulation of binding energies of the complex 

defects in alkali halides, we adopted the semi-discrete lattice 

approximation. In this approximation we treat the lattice 

relaxations of regions I explicitly but calculate them for 

region II using Mott and Littleton approximation [25]. The 

binding energy (hB) of a divalent impurity cat ion vacancy 

complex defect is expressed as 

 hB=W0–W1               (12) 

Where W0 is the energy required to remove an ion from a real 

crystal and W1 is the energy necessary to create a vacancy 

along < 000 > direction in the presence of the divalent 

impurity at (110). 

The energy term W0 can be written as  

W0=-
2

1
(E1

2
+E2

2
)            (13) 

Here E1
2
  and E2

2
 are the potential energies at the position of 

the ion before (E1
V
) and after (E2

V
) its removal. The potential 

energies E1
2
  and E2

2
 can be expressed as 

E1
2
=

CV

1φ +
TV

1φ +
RV

1φ +
VV

1φ         (14) 

Here 
CV

1φ  and 
TV

1φ  are the long- range coulomb and three 

body inter action energies. 
RV

1φ  I the short range repulsive 

energy and 
VV

1φ  denotes the van der wall inter action energy. 

The details of explicit expressions for the above energy terms 

have been discussed elsewhere. Now, the energy W1 can be 

written as  

W1=-½(E1
C
+E2

C
)             (15) 

Here E1
C
 and E2

C 
represent the energies at the position of the 

cat ion ( in the presence of impurity) before and after its 

removal respectively. As in the case W0, we can express E1
C
 

and E2
C
 as follows  

E1
C
 = E1

CC
 + E1

CT
 + E1

CR
 + E!

CP
 +E1

CD 
+ E1

CV 
         (16)

 
 

E1
CC

 and E1
CT

 are coulomb and TBI contributions to the 

undistorted lattice energy. The term E1
CR

 is the short-range 

repulsive energy. The term E!
CP

 represents the polarization 

energy due to induced dipoles at the nearest neighbors of the 

divalent impurity as well as the dipoles of the rest of the 

lattice. The last two terms represent correct to the energy due 

tot the Ionic displacements in the lattice and the van der wall 

interaction energy. In a similar fashion E1
C
 can be expressed 

as 

E1
C
 = E2

CC
 + E2

CT
 + E2

CR
 + E2

CP
 +E2

CD 
+ E2

CV 
        (17)  

Where E2
CC

 + E2
CT

 = E1
CC

 + E1
CT

    (18) 

The field kE
�

 is calculated taking into account of the charges 

and the displacements of the ten neighbors of the complex.

kα are the polarizabilities of the anion impurity. 

5. METHOD OF CALCULATION AND RESULTS 

In the present investigation, we have calculated the 

displacements and dipole moments and hence polarization 

due to divalent metal impurity – cat ion vacancy complex 

defect in six alkali halide crystals, namely NaCl, Na Br, KCl, 

KBr, RbCl and RbBr for Eu
2+ 

impurity by using energy 

minimization method. For that we have developed a computer 

program. The calculated displacements and dipole moment 

coefficients to create a positive ion vacancy in the presence of 

impurities in alkali halides have been given Table. I(A) and 

I(B) respectively. Various energy contributions for the 

removal of a positive ion in the defect lattice for six alkali 

halides have been shown in Table-II (A) and II (B). 

Table-I (A): Displacements, the perfect lattice for six alkali 

halides in the case of Eu2+ impurity 

Crystal 
1η (A

o
) 2η  (A

o
) 1ξ  (A

o
) 2ξ (A

o
) 

NaCl  0.061 0.037 0.066 0.044 

NaBr 0.069 0.040 0.077 0.048 

KCl 0.063 0.098 0.072 0.104 

KBr 0.072 0.092 0.081 0.100 
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RbCl 0.083 0.134 0.093 0.141 

RbBr 0.075 0.125 0.085 0.133 

 
Table-I (B): Dipole moments and the energy to remove a positive 

ion in the perfect lattice for six alkali halides in the case of Eu2+ 

impurity. 

Crystal m1 m2 m3 m4 Wo 

(eV)      

NaCl  0.083 0.101 0.103 0.085 5.974 

NaBr 0.070 0.088 0.090 0.071 5.746 

KCl 0.054 0.062 0.063 0.054 5.679 

KBr 0.064 0.075 0.077 0.064 5.398 

RbCl 0.043 0.052 0.052 0.044 5.542 

RbBr 0.056 0.063 0.066 0.057 5.256 

 
Table II (A): Various energy contributions for the removal of a 

positive ion in the defect lattice for six alkali halides. 

Crystal C

1E  
R

1E  
D

1E  
P

1E  
V

1E  

NaCl -5.49 1.42 -0.14 -1.06 -0.59 

NaBr -5.15 1.24 -0.14 -1.20 -0.54 

KCl -4.81 1.27 -0.30 -0.84 -1.03 

KBr -4.52 0.99 -0.26 -0.96 -1.00 

RbCl -4.57 0.89 -0.36 -0.86 -1.09 

RbBr -4.39 0.90 -0.32 -0.98 -1.08 

 
Table II (B): Various energy contributions for the removal of a 

positive ion in the defect lattice for six alkali halides. 

Crystal C

2E  
R

2E  
D

2E  
P

2E  
V

2E  
W1 

NaCl -5.50 0.90 1.76 -0.52 -0.38 4.80 

NaBr -5.15 0.75 1.92 -0.42 -0.32 4.50 

KCl -4.81 0.64 1.52 -0.25 -0.64 4.63 

KBr -4.52 0.46 1.65 -0.37 -0.59 4.57 

RbCl -4.57 0.35 1.82 -0.22 -0.60 4.61 

RbBr -4.39 0.38 1.62 -0.32 -0.63 4.60 

6. CONCLUSION 

In conclusion in the present paper we have presented our 

investigated result of the binding energy of the ground state of 

a Rare Earth impurity Eu 
2+

 and cat ion vacancy complex in 

six ionic solids, using a many body interaction potential using 

computer simulation. The calculated binding energy reveals 

that the phenomena of polarization due to the charged 

impurity is a responsible factor and governs the stability and 

ground state configuration of the defect complex. Many body 

interactions are found responsible to enhance the polarization 

of the complex and in turn to the larger bending energy of the 

deflect complex, in comparison with the general two body 

potentials. 
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