METHOD DEVELOPMENT AND VALIDATE A HPLC METHOD WITH PDA DETECTOR FOR THE ASSAY OF GEMIGLIPTIN TABLET TO BE EMPLOYED IN ROUTINE AND STABILITY TESTS

T.Subrahmanyam

Department of Chemistry, Sir CRR College PG Courses, Eluru, Andhra Pradesh, India Email:subbutlr@gmail.com

K. A. Emmanuel

Department of Chemistry, Sir C R Reddy (A) College Eluru, Andhra Pradesh, India

BSN.Murthy

Department of Chemistry, Sir CRR College PG Courses, Eluru, Andhra Pradesh, India

M.Raju

Department of Physics, Sir CRR College PG Courses, Eluru, Andhra Pradesh, India

Ch.Bhuvaneswari

Department of Chemistry, Sir CRR College PG Courses, Eluru, Andhra Pradesh, India

Received: Jan. 2020 Accepted: Feb. 2020 Published: Feb. 2020

Abstract: RP-HPLC method has been developed for the quantitative analysis of Gemigliptin in pharmaceutical dosage form. Chromatographic separation of Gemigliptin was achieved on Waters Alliance-e2695, by using Waters Symmetry C-18, 150mm x 4.6mm, 3.5µm, column and the mobile phase containing water pH-4 adjusted with OPA & ACN in the ratio of 30:70% v/v. The flow rate was 1.0 ml/min; detection was carried out by absorption at 210nm using a photodiode array detector at ambient temperature. The number of theoretical plates and tailing factor for Gemigliptin was NLT 2000 and should not more than 2 respectively. %Relative standard deviation of peak area of all measurements always less than 2.0.

Keywords: HPLC Gemigliptin.

ı. Ana	lytica	l meth	ıod d	level	opment	of (Gemi	gli	iptin	Sol	ub	ility	/ stud	y:

Trials	Column	Mobile Phase	Flow rate ml/min	Diluent	Observation
Trial-1	Agilent Eclipse C- 18 150×4.6×3.5μ	water pH-4.0 adjusted with OPA: ACN 20:80	1ml/min	Mobile phase	Peak retention time is very low
Trial -2	Agilent Eclipse C- 18 150×4.6×3.5μ	water pH-4.0 adjusted with OPA: ACN 30:70	1ml/min	Mobile phase	Peak retention time is very low
Trial -3	Waters X- Bridge RP 18 150×4.6×3.5μ	water pH-4.0 adjusted with OPA: ACN 20:80	1ml/min	Mobile phase	Base line is not sufficient
Trial -4	Waters X-Bridge RP 18 150mm x 4.6mm, 3.5µm	water pH-4.0 adjusted with OPA: ACN 30:70	1 ml/min	Mobile phase	Peaks are not separated clearly
Trial -5	Waters Symmetry C-18, 150mm x 4.6mm, 3.5µm	water pH-4.0 adjusted with OPA: ACN 20:80	1 ml/min	Mobile phase	Peak is splited into two peaks

Trial-6	Waters Symmetry C-18, 150mm x 4.6mm, 3.5μm	water pH-4.0 adjusted with OPA: ACN 30:70	1ml/min	Mobile phase	The peak Asymmetry factor was less than 2 for Gemigliptin. The efficiency was more than 2000 Gemigliptin
---------	--	--	---------	--------------	--

Results and Discussions:

2. Analytical Method Validation of Gemigliptin:

2.1 System suitability: Results for system suitability of Gemigliptin:

Injection	Retention time (min)	Peak area	Theoretical plates (TP)	Tailing factor (TF)	Resolution
1	3.294	2045480	4949	1.09	-
2	3.297	2065941	4902	1.10	-
3	3.298	2047394	4919	1.10	-
4	3.299	2046571	4909	1.10	-
5	3.301	2043842	4923	1.10	-
6	3.301	2048229	4909	1.11	-
Mean		2049576			
SD		8162.04			
%RSD		0.40			

2.2 Linearity of Detector Response for Gemigliptin:

S.No.	Conc.(µg/ml)	Area	Acceptance criteria
	Gemigliptin	Gemigliptin	
1	5	305045	G 1
2	12.5	628890	Squared co
3	25	1111639	relation coefficient
4	50	2184552	should be not
5	62.5	2701235	less than 0.999.
6	75	3185831	iess thano.

2.3 Accuracy Data of Gemigliptin:

Recovery	Accuracy Gemigliptin							
level	Amount taken (mg)	Area	Ave Area	%Recovery	%RSD			
	30	1110993						
50%	30	1115236	1112958	100.3	0.19			
	30	1112646						
	60	2114892						
100%	60	2113723	2119120	100.1	0.39			
	60	2128745						
	90	3159818						
1500/	90	3184011	3171285	99.8	0.38			
150%	90	3170026						

3.Limit of Detection (LOD) and Limit of Quantitation (LOQ):

		LOD		LOQ	
S.No.	Sample name	Conc.(µg/ml)	S/N	Conc. (µg/ml)	S/N
1.	Gemigliptin	0.0502	6	0.502	26

4. Stability: Sample was prepared and stability study was carried out at different time intervals upto 24 hours and the results were recorded.

Time period	Gemigliptin
(hours)	% Assay
Initial	101.7
6 Hrs	101.5
12 Hrs	101.4
18 Hrs	101.6
24 Hrs	101.7

5. Degradation Studies Data:

S.No	Degradation	%Recovery	%Degradation
3.110	Parameters	Gemigliptin	Gemigliptin
1	CONTROL	100.5	-1.5
2	ACID	81.2	16.1
3	ALKALI	76.6	14.5
4	PEROXIDE	72.8	13.2
5	REDUCTION	68.9	12.4
6	THERMAL	65	12.1

6. Conclusion: In conclusion a validated RP-HPLC method has been developed for determination of Gemigliptin the bulk and tablet dosage form. The results show that the method was found to be specific, simple, accurate, precise and sensitive. The method was successfully applied for the determination of Gemigliptin tablet dosage form.

References:

- 1. M. Kobylinska, and k. Kobylinska J. of Chrom. B, Analytical sciences and applications 7, 1207 (2000).
- 2. Evaluation of antiemetic effects of domperidone in patients, Journal of Clinical investigation, 8, 1
- 3. Argekar, Shah J of pharm biomed analysis, 6, 813 (1999).
- 4. Rindi, Fiocca, Miller, Europ. J. Gastroenterology and Hepatology, 17, 559 (2005).
- 5. M. Mondal, TK. Pal Jayakumar, Chattaraj, Banerjee, J. Indian Medical Association, 102, 26 (2004).
- 6. ICH, Q3B validation of analytical procedures: methodology, international conference on Harmonization, Nov. 1996.
- 7. ICH, Q2A Text on validation of analytical procedures, international conference on Harmonization, Oct. 1994.
